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The problem of irregular interaction of weak shock waves, which occurs in the ana- 

lysis of interpenetration of two waves of different intensities at small interaction 
angle [ 1, 21, is considered. It is not possible to solve this problem in linear confi - 
guration when the region adjacent to the Mach wave front shrinks to a point, which 
results in it becoming a nonlinear problem, Behavior of the solution throughout the 
interaction region is analyzed by the method of matching asymptotic expansions 
13, 41. The external problem is solved in linear formulation. A boundary value 
problem for the system of nonlinear equations of short waves [5], which takes into 
account the linking of its solution with the linear external problem and with solu- 
tions in the neighborhood of reflected fronts at the inner region boundary, is formu- 

lated for the inner region in the neighborhood of the Mach wave front. The effect 
of the initial state parameters on the pattern of flow is investigated and an appro- 
ximate solution of the problem is derived. 

1, Let us consider the interaction of two plane shock waves in a stationary perfect 
polytropic gas running off a wedge of angle a (Fig, 1, a). Let the waves meet at instant 
of time t = 0 at point 0 and begin to interact. We select the system of coordinates 

so that the 0x -axis lies along the wedge axis of symmetry. For weak shock waves of 
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different intensity 
p 

I 
= PI - pn 

-, Zpll 
pJJ = PIT - p” 

( 
XPO 

1. 1) 

and small angles a (c~ < a*) according to [l, 21 an irregular interaction takes place 
between these, resulting in the formation of a curvilinear front A ,A 2 between the plane 

a 

Fig. 1 

b 

waves AIJ, and A,J, and of a region of perturbation bounded by the wedge surface and 

the fronts of the Mach and the reflected waves AIDI and A,D, . 
Setting I-‘[ > I-‘JJ for the parameters of the problem, we have 

F Z PI (F < I), II -1 I’,1 / PI, u” ry (X/ x+1 
7 PI (1.2) 

In the region of perturbations we have a quasi-stationary (characteristic dimensions of 
length and time are absent) flow of compressible gas which is vortex-free to within the 
order of a2 and is defined by the equation for the velocity potential [6, 71 

(1 - r?) iv, + + .ir + ; /,N = (x - 1) [.I - r,i, -+ 3 /,,” t- & fo2) x (1.3) 

jirr + + .fr mL ; JO”) mAm (ir’ - 3rl,) fVl. -t s (fo - rlrO) .f0 + 

; f,?fO” im ; fr.Mr,i - + f!.fl,” 

and that of Lagrange-Cauchy 

II*‘? _ (1 7 #)‘“-tJ x __ 1 _ (X - 1) (1 - rfr + $ f,’ -I- & j?) (1.4) 

/’ _ P - I-“) 
%pd 

In these equations both the independent r, 0 and the dependent f, I-‘. a* variables are 

related to the components of the Cartesian system 2, y. the velocity potential ~1) (IL = 

Cl),<. u = CD,), pressure p and the speed of sound n by expressions 

.T _ a,,tr cos 0. y a,tr sin (1 (1.5) 

(1) ;I aUztf (r. 0). p = pnai2p*, a = a,a* 

where the zero subscript denotes parameters of gas at rest. 
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Let us establish the conditions at the boundary of the perturbation region. At the wedge 
walls D,O and D,O we have 

flj = 0 for 0 =n --a/2, 0 =r]+a~2 (1.6) 

At the shock wave fronts r = k (0) which in the general case propagate through the 

uniform stream with potential fr at velocity u , the compatibility conditions (in terms 

of variables (1.5)) 
u - u,L == UT = Ut: (1.7) 

apply. Expressing the normal u,, and tangential ur components of velocity in terms of 
f, and /,), from conditions (1.7) we obtain the differential equation for the shock front 

/V = 
Xii” L [(H + 1) 12’” + (x - 1) k”] j,, 1. X’ft,, 

- 
(x -I- 1) (is’ -1 /L’) 

(1.8) 

a/,*3 

(x + 1) (k - fl, + k’/c-“flo) 

and the conditions at the front 

The potential fr of the uniform flow upstream of the front is defined by 

ft = r (Olr cos (Cl _t a / 2) 1 b,) (1.10) 

where the plus and minus signs relate to the stream ahead of waves il ID I and A 2D, , 
respectively. 

If the shock wave degenerates into a line of weak discontinuity r s rj: (0). then, in 
accordance with the first of Eqs. (1.7) for IL,, + or,,, we have the differential equation 
of that line 

(1.11) 

Conditions of velocity and pressure continuity 

f, = flV. fe - /le. I’ = P, (1.12) 

apply along the weak discontinuity line. 

Integrating (1. ll), we obtain the equation of the weak discontinuity line 

r = ED, cm (8 r+ a / 2) +- VCZ~*~ - e”D”tsin ‘? (0 t (x. / 2) (1.13) 

where coefficient b, and the sign of the argument are taken in accordance with (1.10). 

The problem thus reduces to the integration of the nonlinear system of Eqs. (1.3), (1.4) 
with boundary conditions (1.6), (1.8) and (1.9) or (1.12) and (1.13) which presents con- 
siderable mathematical difficulties. 

2. The solution of the problem of weak shock waves in the perturbation region is 
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usually derived [6] by the method of asymptotic expansion in terms of the small para- 
meter 

/ (r, 8, F) = Ef”’ (?-, 0) + . . .) P I EP(‘) it . . . (2.1) 

whose first terms of expansions f(l) and [)(I) , obtained from Eqs. (1.3) and (1.4), are 
defined by the system of linear equations 

(I - r2) fJ’) --~ f fr(l) -- f f@(l) = 0, 
p(1) = rf.f,(l) _ p 

(2.2) 

In linear formulation, by considering the shock wave fronts as weak perturbation fronts 
and for small angles a transferring the boundary conditions (1.6) at the wedge surface 
to the axis 0 = 0, we eliminate f(l) from system (2.2), use Chaplygin’s transformation 

0 = r-l (1 - r/l - r2) , and obtain for ZIL1) the Laplace equation 

Pi:’ =O for O<O,<l, 0 =n 

p = 1 for (5 =I. o<o<rI 

PC’) = q for 0 = 1, rI<e<an 

with boundary conditions (1.6) and (1.12). 
In conformity with [8] we write the solution of this boundary value problem as 

P(I) = +(l -t 11)_t$(1 - 11) arctg ~~t,~~ei , 
“= P 

‘Ii (2.3) 

where the plus and minus signs relate, respectively, to 0 < 8 < n and II < 8 < 211. 

The pressure field in the perturbation region is qualitatively shown in Fig. 1, b in accor- 

dance with solution (2.3). Solution (2.3) has a singularity at point _4 (r = 1, 8 = Oj: 
pressure changes jump-like from P(1) z r along AD, to P(l) = 1 along AD,. ‘l’his 
singularity is due to the physical imperfection of the linear formulation when the Mach 

wave front is absent and the pressures along fronts AD2 and AD1 are constant. Note 
that the case of interaction of shock waves of nearly equal intensity (1 - 7 < 1) 
when the interaction pattern is close to symmertic, cannot be physically considered here 
as a particular case of solution (2.3) for 11 --f 1 and must be analyzed separately. 

3. Let us construct the solution defining the flow in the neighborhood of fronts AIDI 
and A,D,. Investigation of each front is conveniently carried out in a moving frame 
of reference whose velocity coincides with velocity 4 (ql, q2) of the uniform flow up- 

stream of the wave front (1.10) 

z -=: a,t (51 $- q1 : a,), Y = a,t (Yl + q2 / 0,) 

JY‘1 = R cos 6, y1 = K sin 8 

By expressing the potential of the uniform flow in accordance with (1.10) 

0, = 91” + qzy -I- q32 

q1 = eb,a, cos a I 2, q2 = - cb,a, sin (i_ cx / a), 

q, = E b,a,’ 

(3.1) 

we obtain a solution of the form 

(3.2) 
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where a, and a, are the (dimensional) speedsofsound in the gas at rest and in the uni- 
form stream (1.10) , respectively. The relation between components R and 6 of 

the moving frame of reference and polar coordinates 1’ and 0 is defined in accordance 
with (1.5) and (3.1). 

Passing in the system of equations of gas dynamics to variables (3.1) and (3.2), we 
obtain for functions F, I-‘” and a” a system of equations which coincides with system 

(1.3X(1.4) (P’ = (p -&) i’ 3tpJ 
Conditions at the shock front I$ = X- (6) (I. 8), (1.9) are of the form 

FR = -& [ 1 ,_ ;,2k_z - -$-I , F = 0, I-” = kFR (3.3) 

Conditions along the line of weak discontinuity whose equation (1.13) in variables R 
and 6 is R =1 (3.4) 
assume the form 

J-r: = 0, F =O, P’sC~ (3.5) 

We seek potential F in the neighborhood of the shock wave and of the weak discon- 
tinuity line in the form 

F = E’~F~ (d, 6) + . . ., R = 1 + r”cp (6) A (3.6) 

In these expressions A = 1 corresponds to the shock wave, the equation of the weak 

discontinuity line is obtained according to (3,4) for A = 0, and we can set q = 1. 

Analysis of the behavior of system (1.3),(1,4) at the front (1. 8),(1.9) or (1.12),(1,13) 
shows [4] that m = 2n (frr N 0 (I)) + Substituting (3.6) into the equation for !’ (of 
the form of (1.3)), for function Z (A, 6) derived with the use of expression 

F, = 2 (x + 1)-l cp2 (6) 2 (A, 6) (3.7) 

we obtain the equation 
22~.5(2~ -A) -23 =O (3.8) 

similar to the equation of one-dimensional short waves [9], The general solution of 

(3.8) is of the form (3.9) 

2 (L?,, 6) = ‘/a 1 A (6) 1 A + B (6) f I/&” 2 1 A (43) 1 Pr’, 1 A (6) I - AP 

where (A (6) and B (6) are arbitrary functions, 
Boundary conditions for 2 (A, S) in accordance with (3.3) and (3.5) are: 

at the shock wave front 
2 =o, ZA = 2 for A = 1 (3. IO) 

at the weak discontinuity line 

z =o, Za = 0 for A = 0 (3.11) 

From the Lagrange-Cauchy equation (of the form (1,3)) we obtain for pressure at the 
fronts the expression 

P = P, _t en@ (6) Fld (3.12) 

where P, defines the pressure upstream of the front in accordance with (1.4); the expo- 
nent fl and function cp (6) for the shock iront, and function A (6) for the weak discon- 
tinuity line are determined by the condition of matching of the internal solution (3.12) 
with the external solution (2.3) [4]. 
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4. To investigate the flow in the region of shock wave interaction in the proximity 
of the Mach wave n1A.s (Fig. 1, a) we pass to internal variables [4, 71 

and represent potential / and pressure P in the form 

+qL IT(l) (6, Y) + . . .) I’ == F PC’) + . . . (4.2) 

Introducing the notation 
k&i) zzz p., Fy(‘) = Y 

and using Eqs. (1.3) and (1.4), for the first terms of expansion (4.2) we obtain the system 
of nonlinear equations 

2 (l_l - 6) 11s + YY i p = 0. 1ty = vg, pc1, _ /J_ (4.3) 

From (1.8) and (1.9) we obtain the differential equation defining the shock wave front 

and conditions at the front 

(p - pi) -$ -t_ v - vi z: 0, cL _ l,(‘) (4.5) 

Taking into consideration (1.10) for the fronts AiD,, AaD, and A,d,, we obtain 

pi = q, VI z -q(Y+a‘/2) (4.6) 

The quantity & / dI’ is geometrically determined by the angle $ between the normal 

to the front and the direction of the radius vector [lo] 

(4.7) 

In accordance with Eq. (4.3) the condition p L_ I ~1) is automatically satisfied at the 

front. The conditions at the wedge walls (1.6) must be disregarded as external to the 

region of expansion (4.1). 
The system of Eqs. (4.3) represents the known system of equations for short waves [5] 

and defines the flow in the region of abrupt change of flow parameters downstream of 
shock waves. 

Analysis of condition (4.4) and (4.5) at points A, and A, of intersection of shock 
fronts with the condition that in the region downstream of the fronts p :-= p(r) leads to 
the conclusion [lo] that in the first approximation (4.2) the shock fronts AID, and A,D, 
are lines of weak discontinuity which in accordance with (4.4) are defined by the equa- 
tion b zz 111 (4.3) 

The derivation of solutions of (4.3) in the internal region requires that in addition to 
conditions (4.4) and (4.5) the conditions of matching these with the solution in the neigh- 
borhood of fronts (3.12) and with the solution (2.3) in the outer region. 

Expressing the external solution (2.3) in terms of internal variables (4.1) and retaining 
the first term of expansions in t’, for the condition of matching (4.3) at the region bound- 
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ary we obtain 

where the plus and minus signs relate to Y > 0 and I’ < 0) , respectively. 
In the neighborhood of fronts AID, and d,D, solution (3.12) satisfies conditions 

(3.11) matches with solution (2.3) for 

and for 1 -q N O(1) (h” > 2A) is of the form 

where the plus and minus signs relate to 0 ( Q < n and n < 6 ( 2n , respectively. 
The condition of matching the solution of system (4.3) for the tirst term of expansion 

(4.2) with solution (4.10) at the region boundary with allowance for (4.1) and (3.6) is 

p = f’(I) _- ‘is [(I -:- 11) f (1 - I])], Y-+foo (4.11) 

Substituting (4.11) into (4.3) and taking into account the directions of uniform streams 
(1.10) upstream of weak discontinuity lines, we obtain conditions 

y = --(I- -! u” /3), Y-too (4.12) 

v z= - 11 (1’ - v.” / 2). Y-t -co 

which are equivalent to (4.11). 

6. The problem is thus reduced to the integration of the system of Eqs. (4.3) of short 
waves in region A ,B,C,C$,A,A, (Fig. 2, a), where the system (4.3) is of the elliptic 

C, r 
AN 

---____ 
4 

I 
I 
I 

a b 

Fig. 2 

kind with conditions (4.4), (4.5). (4.8) and (4.12) at the region boundaries 
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B,A,: I” = 1, 6 =I 

A,A,: p+v=o, -34-1/26-p 
dY 

A,B,: p = q, 6 =q 

B,C,: Y =.= - q (Y - a” / 2), Y-t -00, 6 < 1 

(5.1) 

c,c, : 6--t- .X, 

C,B,: v = -(Y + a-./2), Y -+ + 00, s,cv 

The problem (4.3), (5.1) is a boundary value problem with an unknown element of the 
region boundary, since the boundary A ,A, (the Mach wave front) in (5.1) is determined 

by the solution p = p (6, Y) ,which considerably complicates the analysis and solution 
of the problem. 

Let us pass to new dependent 6 and Y and independent S and N variables defined 

bY 
S =26-p, N =-v/p (5.2) 

in which boundary A1A, and the remaining sections of the boundary are known. For the 
system corresponding to (4.3) in variables (5.2) we have 

2 (6 - S) Yx + N6.v + (26 - S) 6s - (66 - 5S) @SyN - (5.3) 

6,yYs) = 0 

NYN -6~ + (26 - s) ys - 2N (6SYN - 6,~y.s) = 0 

and boundary conditions 

B,A,: 6 = 1, s =I (5.4) 

AlA,: 2N13~ + 6N -N (2NYs f YN) = 0, N” = S 

A,B,: 6 = 7, s =q 

B,C,: I’ = N + a” ! 2, N-t -co, Is,<1 

C,B,: Y =h: -a” 12, N-t + 00, S<rl 

The problem (5.3), (5.4) is a boundary value problem for the system of nonlinear equa- 
tions of the elliptic kind (S ( 6) in region G (B,A,A,B,C,C,B,) with known bound- 
aries (Fig. 2, b). Transformation (5.2) ensures the one-to-one correspondence of planes 
6, Y and S, N for inner points of region G, since in accordance with (5.3) 

D (6, Y) i D (S, N) = 6SYN - 6NY,$ = 0 for S > 6 

The formulation of problem (5.3), (5.4) is equivalent to formulation (4.3), (5.1) and is 
of interest for the mathematical analysis and the exact solution of irregular interaction 
of two waves of different intensity. 

6. Let us investigate the dependence of angle X between the directions of motion 
of triple points Al and A? on initial parameters PI, P1r and a or, according to (1.2), 
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v and a”. 
Taking into account (5. l), (5.2) and (4.7), we write the expression for N at points 

Al and A, of the front A,A, as 

N1 =$t”, N, = -+2y (6.1) 

and taking further into account that in accordance with (5.4) N, = 1 and N, =- ~‘~2, 
we obtain 

$1” = 1, &” = $2 (6.21 

We have the geometric dependence (Fig. 1, a) x f a = I& + I&_, hence for angle 
X. we have 

‘x- -_I _ a” + $/z (6.3) 
or 

x= jppP,q/yPIr-a (6.4) 

The considered model of flow obtains for x” > 0, i. e. in accordance with (6.3) for 
a” > 1 -j- 7”. 

Formula (6.4) is an agreement with the experimental data of Smith /Jl] according to 
which for a” 6 1 -/- q”‘” and weak shock waves the relationship between X, and 05 is 

close to linear (8% / ot) -;= 1, 8 = TI - a), while for a” > 1 + TJ’;* X is very small, 

7, Let us consider the approximate solution of 
solution of the system of Eqs. (4.3) [5]. We have 

6 = - ‘/,Y2tg2 (t)~ + c) + B 

I/s b-l sin 2 (bp + c) + p 

problem (4.3). (5.1) using the exact 

sin” (6p + c) + (7.1) 

2, = [b-’ tg (bp + c) - pl Y (6, c, B = const) 

When 1 - 11 - 0 (I), solution (7.1) satisfies conditions (5.1) of matching on C,C, 
for 

b=__. .z c+=-b for Y >o 
1-_11’ c- = - qb for y << 0 

(7.2) 

The conditions along B,A, and A,B, are automatically satisfied in (5.1) because for 
(7.2) the argument by + c vanishes. The conditions along boundaries C,B, and C&I,_, 
are, also, satisfied in (5.1) for Y --f rrt o in (7.1). 

Using (5.2), (6.1) and (6.2) and taking into account formula (4.6) for v1 in the uni- 
form streams downstream of fronts A,J, and A,J,, for the coordinates of points A, and 
As we obtain 

&==I, Y,=1 - a’ i 2; 6, = Tj, Y, z - 7”” + a” / 2 (7.3) 

At the shock wave front AIA, condition (5.1) (conservation of the tangential velocity 

component) is approximately satisfied (at points A, and A2 this becomes clear when 
for a” < 2~“~ (7.3) is substituted into (7.1)). The analysis of solution (7.1) shows that 
when Y = 0 for ~1 = p* we have 

CL* = (1 + r) / 2 (7.4) 

We determine constant B in solution (7.1) by integrating the equation of the front of 
shock wave A1A, (which is conveniently done in variables p,, Y) 

(d6 / dY)z = 26 - p 
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from point A i to point A 2 with conditions (7.3) so as to have condition (7.4) satisfied 
for Y = 0 . 

A qualitative picture of pressure distribution in the case of irregular interaction of 
weak shock waves for q = 0.8 and a’ = 0.2 is shown in Fig. 3, a. In Fig. 3, b lines 

a b 

Fig. 3 

of constant pressure (velocity) in the neighborhood of front A1A, conforming to solution 

(7.1) have been plotted in the system of coordinates X = 6 - Ii, Y’, Y = Y (B = 
0.79). The pressure distribution in that neighborhood is consistent with that in the exter- 
nal region where the flow is defined by solution (2.3). 

The case of interaction between shock waves of nearly equal intensity (1 - 11 (( 1) 
cannot be considered here as the limit for q -+ 1 , and must be considered separately. 
An approximate solution of the problem in the case of irregular reflection of a shock 
wave from a solid wall, which corresponds to the case of symmetric interaction (q= 1) 

is given in [lo]. 
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Certain problems of acoustic wave propagation in a medium located in a gravita- 
tional field are considered on the basis of exact solution for one-dimensional mo- 

tion of the medium. 

1. Fundamental equation8 and the general solution for one- 

dimensional motion of medium. Equations of one-dimensional motions of 
a medium in a gravitational field are of the form 

This system uniquely defines velocity u and density p for a given equation of state 
p = p (p). Introducing new variables w and i, we obtain [1] 

where c is the speed of sound. After transformation of variables t = t (w, i) and 
x = J: (w, i) the system of equations becomes 

8X 
&$t_&-0, ~-u$+e+o 

Let 
t w 

=x9 I$ = 4~ NJ, 9 

then from (1.2) we have 

W gt2 

If the equation of state is given in the form p = Ap” f B, then c2 = i (n 

the general solution of Eq. (1.5) is 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

1) and 


